4.5 Article

Image-based calibration of a deformable mirror in wide-field microscopy

期刊

APPLIED OPTICS
卷 49, 期 11, 页码 2030-2040

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.49.002030

关键词

-

类别

资金

  1. McKnight Technological Innovations in Neuroscience Award
  2. National Institutes of Health (NINDS/NIAAA) [R01NS068409]

向作者/读者索取更多资源

Optical aberrations limit resolution in biological tissues, and their influence is particularly large for promising techniques such as light-sheet microscopy. In principle, image quality might be improved by adaptive optics (AO), in which aberrations are corrected by using a deformable mirror (DM). To implement AO in microscopy, one requires a method to measure wavefront aberrations, but the most commonly used methods have limitations for samples lacking point-source emitters. Here we implement an image-based wavefront-sensing technique, a variant of generalized phase-diverse imaging called multiframe blind deconvolution, and exploit it to calibrate a DM in a light-sheet microscope. We describe two methods of parameterizing the influence of the DM on aberrations: a traditional Zernike expansion requiring 1040 parameters, and a direct physical model of the DM requiring just 8 or 110 parameters. By randomizing voltages on all actuators, we show that the Zernike expansion successfully predicts wavefronts to an accuracy of approximately 30nm (rms) even for large aberrations. We thus show that image-based wavefront sensing, which requires no additional optical equipment, allows a simple but powerful method to calibrate a deformable optical element in a microscope setting. (C) 2010 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据