4.6 Article

Pollen feeding proteomics: Salivary proteins of the passion flower butterfly, Heliconius melpomene

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2015.04.004

关键词

Saliva; Proteomics; Heliconius; Pollen feeding; Lepidoptera

资金

  1. Balfour-Browne Fund
  2. University of Kansas

向作者/读者索取更多资源

While most adult Lepidoptera use flower nectar as their primary food source, butterflies in the genus Heliconius have evolved the novel ability to acquire amino acids from consuming pollen. Heliconius butterflies collect pollen on their proboscis, moisten the pollen with saliva, and use a combination of mechanical disruption and chemical degradation to release free amino acids that are subsequently reingested in the saliva. Little is known about the molecular mechanisms of this complex pollen feeding adaptation. Here we report an initial shotgun proteomic analysis of saliva from Heliconius melpomene. Results from liquid-chromatography tandem mass-spectrometry confidently identified 31 salivary proteins, most of which contained predicted signal peptides, consistent with extracellular secretion. Further bioinformatic annotation of these salivary proteins indicated the presence of four distinct functional classes: proteolysis (10 proteins), carbohydrate hydrolysis (5), immunity (6), and housekeeping (4). Additionally, six proteins could not be functionally annotated beyond containing a predicted signal sequence. The presence of several salivary proteases is consistent with previous demonstrations that Heliconius saliva has proteolytic capacity. It is likely that these proteins play a key role in generating free amino acids during pollen digestion. The identification of proteins functioning in carbohydrate hydrolysis is consistent with Heliconius butterflies consuming nectar, like other lepidopterans, as well as pollen. Immune-related proteins in saliva are also expected, given that ingestion of pathogens is a likely route to infection. The few housekeeping proteins are likely not true salivary proteins and reflect a modest level of contamination that occurred during saliva collection. Among the unannotated proteins were two sets of paralogs, each seemingly the result of a relatively recent tandem duplication. These results offer a first glimpse into the molecular foundation of Heliconius pollen feeding and provide a substantial advance towards comprehensively understanding this striking evolutionary novelty. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据