4.6 Article

Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade

期刊

ACTA PHYSIOLOGICA
卷 196, 期 3, 页码 295-302

出版社

WILEY
DOI: 10.1111/j.1748-1716.2008.01946.x

关键词

brain oxygenation; cardiac output; cerebral mitochondrial oxygen tension

资金

  1. Danish Research Agency (the Strategic Programme for Young Scientists) [2117-05-0095]
  2. Faculty of Health Sciences, University of Copenhagen

向作者/读者索取更多资源

Beta-blockers reduce exercise capacity by attenuated increase in cardiac output, but it remains unknown whether performance also relates to attenuated cerebral oxygenation. Acting as their own controls, eight healthy subjects performed a continuous incremental cycle test to exhaustion with or without administration of the non-selective beta-blocker propranolol. Changes in cerebral blood flow velocity were measured with transcranial Doppler ultrasound and those in cerebral oxygenation were evaluated using near-infrared spectroscopy and the calculated cerebral mitochondrial oxygen tension derived from arterial to internal jugular venous concentration differences. Arterial lactate and cardiac output increased to 15.3 +/- 4.2 mm and 20.8 +/- 1.5 L min(-1) respectively (mean +/- SD). Frontal lobe oxygenation remained unaffected but the calculated cerebral mitochondrial oxygen tension decreased by 29 +/- 7 mmHg (P < 0.05). Propranolol reduced resting heart rate (58 +/- 6 vs. 69 +/- 8 beats min(-1)) and at exercise exhaustion, cardiac output (16.6 +/- 3.6 L min(-1)) and arterial lactate (9.4 +/- 3.7 mm) were attenuated with a reduction in exercise capacity from 239 +/- 42 to 209 +/- 31 W (all P < 0.05). Propranolol also attenuated the increase in cerebral blood flow velocity and frontal lobe oxygenation (P < 0.05) whereas the cerebral mitochondrial oxygen tension decreased to a similar degree as during control exercise (delta 28 +/- 10 mmHg; P < 0.05). Propranolol attenuated the increase in cardiac output of consequence for cerebral perfusion and oxygenation. We suggest that a decrease in cerebral oxygenation limits exercise capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据