4.5 Article

Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes

期刊

ACTA PHYSIOLOGIAE PLANTARUM
卷 35, 期 2, 页码 451-461

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11738-012-1088-6

关键词

Drought tolerance; Gas exchange; Osmotic stress; Proline; Soluble carbohydrates; Wheat

资金

  1. Ministry of Science and Higher Education in Poland [480/N-COST-2009/0]

向作者/读者索取更多资源

In this study, the seedlings of two wheat cultivars were used: drought-resistant Chinese Spring (CS) and drought-susceptible (SQ1). Seedlings were subjected to osmotic stress in order to assess the differences in response to drought stress between resistant and susceptible genotype. The aim of the experiment was to evaluate the changes in physiological and biochemical characteristics and to establish the optimum osmotic stress level in which differences in drought resistance between the genotypes could be revealed. Plants were subjected to osmotic stress by supplementing the root medium with three concentrations of PEG 6000. Seedlings were grown for 21 days in control conditions and then the plants were subjected to osmotic stress for 7 days by supplementing the root medium with three concentrations of PEG 6000 (D1, D2, D3) applied in two steps: during the first 3 days of treatment -0.50, -0.75 and -1.00 and next -0.75, -1.25 and -1.5 MPa, respectively. Measurements of gas exchange parameters, chlorophyll content, height of seedlings, length of root, leaf and root water content, leaf osmotic potential, lipid peroxidation, and contents of soluble carbohydrates and proline were taken. The results highlighted statistically significant differences in most traits for treatment D2 and emphasized that these conditions were optimum for expressing differences in the responses to osmotic stress between SQ1 and CS wheat genotypes. The level of osmotic stress defined in this study as most suitable for differentiating drought resistance of wheat genotypes will be used in further research for genetic characterization of this trait in wheat through QTL analysis of mapping population of doubled haploid lines derived from CS and SQ1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据