4.5 Article

Caffeine affects adventitious rooting and causes biochemical changes in the hypocotyl cuttings of mung bean (Phaseolus aureus Roxb.)

期刊

ACTA PHYSIOLOGIAE PLANTARUM
卷 30, 期 3, 页码 401-405

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11738-007-0132-4

关键词

cellular respiration; protease activity; protein content; polyphenol oxidase activity; total endogenous phenolic content

向作者/读者索取更多资源

Caffeine (1,3,7-trimethylxanthine), a purine alkaloid found naturally in over 100 plant species, has recently been viewed as a safe chemical for management of pests including molluscs, slugs, snails, bacteria, and as a bird deterrent. It possesses phytotoxicity against plant species, yet the mechanism of action is lacking. A study was conducted to determine the effect of caffeine on the rooting of hypocotyl cuttings of mung bean (Phaseolus aureus) and the associated biochemical changes. At lower concentrations (< 1,000 mu M) of caffeine, though rooting potential was not affected, yet there was a significant decrease in the number of roots and root length. At 1,000 mu M caffeine, there was a 68% decrease in the number of roots/primordia per cutting, whereas root length decreased by over 80%. However, no root formation occurred at 2,000 mu M caffeine. Further investigations into the biochemical processes linked to root formation revealed that caffeine significantly affects protein content, activities of proteases, polyphenol oxidases (PPO) and total endogenous phenolic (EP) content, in the mung bean hypocotyls. A decrease in rooting potential was associated with a drastic reduction in protein content in the lower rooted portion, whereas the specific activity of proteases increased indicating that caffeine affects the protein metabolism. Activity of PPO decreased in response to caffeine, whereas EP content increased significantly indicating its non-utilization and thus less or no root formation. Respiratory ability of rooted tissue, as determined through TTC (2,3,5-triphenyl tetrazolium chloride) reduction, was impaired in response to caffeine indicating an adverse effect on the energy metabolism. The study concludes that caffeine interferes with the root development by impairing protein metabolism, affecting activity of PPO (and thus lignification), and EP content, which are the crucial steps for root formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据