4.1 Article Proceedings Paper

Structure Prediction for PbS and ZnO at Different Pressures and Visualization of the Energy Landscapes

期刊

ACTA PHYSICA POLONICA A
卷 120, 期 2, 页码 215-220

出版社

POLISH ACAD SCIENCES INST PHYSICS
DOI: 10.12693/APhysPolA.120.215

关键词

-

向作者/读者索取更多资源

An important issue in modern solid state chemistry is the development of a general methodology to predict the possible (meta)-stable modifications of a solid. This requires the global exploration of the energy landscape of the chemical system, since each stable phase corresponds to a locally ergodic region of the landscape. The global search in the lead sulfide system has been performed with simulated annealing on the ab initio level, while zinc oxide was studied with an empirical potential using simulated annealing, both at standard and elevated pressure (up to 100 GPa). The local optimization of the modifications found in the PbS system was performed using various density functionals. Next, the energy E(V) and enthalpy H(p) as function of volume and pressure, respectively, were computed for these modifications and their electronic structure was analyzed. The structures found for ZnO were locally optimized on ab initio level (DFT and Hartree-Fock). In both systems the structures found were in good agreement with the experiment. Furthermore, we employed the threshold algorithm to explore the barrier structure of the landscape of ZnO as function of the number of formula units in the simulation cell. Based on the barrier and minima information 2-D models of the energy landscape were constructed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据