4.5 Article

Bioimpedance spectroscopy for the estimation of body fluid volumes in mice

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 299, 期 1, 页码 F280-F283

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00113.2010

关键词

intracellular fluid volume; extracellular fluid volume; total body water

资金

  1. National Institute of Diabetes and Digestive and Kidney Diseases [R01DK96392]
  2. Gilead Sciences, Inc

向作者/读者索取更多资源

Chapman ME, Hu L, Plato CF, Kohan DE. Bioimpedance spectroscopy for the estimation of body fluid volumes in mice. Am J Physiol Renal Physiol 299: F280-F283, 2010. First published May 12, 2010; doi: 10.1152/ajprenal.00113.2010.-Conventional indicator dilution techniques for measuring body fluid volume are laborious, expensive, and highly invasive. Bioimpedance spectroscopy (BIS) may be a useful alternative due to being rapid, minimally invasive, and allowing repeated measurements. BIS has not been reported in mice; hence we examined how well BIS estimates body fluid volume in mice. Using C57/Bl6 mice, the BIS system demonstrated <5% intermouse variation in total body water (TBW) and extracellular (ECFV) and intracellular fluid volume (ICFV) between animals of similar body weight. TBW, ECFV, and ICFV differed between heavier male and lighter female mice; however, the ratio of TBW, ECFV, and ICFV to body weight did not differ between mice and corresponded closely to values in the literature. Furthermore, repeat measurements over 1 wk demonstrated <5% intramouse variation. Default resistance coefficients used by the BIS system, defined for rats, produced body composition values for TBW that exceeded body weight in mice. Therefore, body composition was measured in mice using a range of resistance coefficients. Resistance values at 10% of those defined for rats provided TBW, ECFV, and ICFV ratios to body weight that were similar to those obtained by conventional isotope dilution. Further evaluation of the sensitivity of the BIS system was determined by its ability to detect volume changes after saline infusion; saline provided the predicted changes in compartmental fluid volumes. In summary, BIS is a noninvasive and accurate method for the estimation of body composition in mice. The ability to perform serial measurements will be a useful tool for future studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据