4.7 Article

Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG

期刊

INORGANIC CHEMISTRY
卷 55, 期 2, 页码 478-487

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.5b02274

关键词

-

资金

  1. National Institute of General Medical Sciences of the National Institutes of Health [F32GM111025, R01GM104543]
  2. Division of Materials Science and Engineering of the Department of Energy [DE-FG02-09ER46632]

向作者/读者索取更多资源

Hydrogenase enzymes catalyze the rapid and reversible interconversion of H-2 with protons and electrons. The active site of the [FeFe] hydrogenase is the H cluster, which consists of a [4Fe4S](H) subcluster linked to an organometallic [2Fe](H) subcluster. Understanding the biosynthesis and catalytic mechanism of this structurally unusual active site will aid in the development of synthetic and biological hydrogenase catalysts for applications in solar fuel generation. The [2Fe](H) subcluster is synthesized and inserted by three maturase enzymesHydE, HydF, and HydGin a complex process that involves inorganic, organometallic, and organic radical chemistry. HydG is a member of the radical S-adenosyl-l-methionine (SAM) family of enzymes and is thought to play a prominent role in [2Fe](H) subcluster biosynthesis by converting inorganic Fe2+, l-cysteine (Cys), and l-tyrosine (Tyr) into an organometallic [(Cys)Fe(CO)(2)(CN)](-) intermediate that is eventually incorporated into the [2Fe](H) subcluster. In this Forum Article, the mechanism of [2Fe](H) subcluster biosynthesis is discussed with a focus on how this key [(Cys)Fe(CO)(2)(CN)]- species is formed. Particular attention is given to the initial metallocluster composition of HydG, the modes of substrate binding (Fe2+, Cys, Tyr, and SAM), the mechanism of SAM-mediated Tyr cleavage to CO and CN , and the identification of the final organometallic products of the reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据