4.7 Article

An observer's view of simulated galaxies: disc-to-total ratios, bars and (pseudo-)bulges

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1745-3933.2010.00900.x

关键词

methods: numerical; galaxies: formation; galaxies: fundamental parameters; galaxies: photometry; galaxies: structure

向作者/读者索取更多资源

We use cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies to study the relative importance of the main stellar components, i.e. discs, bulges and bars, at redshift zero. The main aim of this Letter is to understand if estimates of the structural parameters of these components determined from kinematics (as is usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we have produced synthetic observations of the simulation outputs with the Monte Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images (in the i and g bands). We find that the kinematic disc-to-total (D/T) ratio estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically > 0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows that many of the simulated galaxies have bars, with Bar/T ratios in the range 0.2-0.4, and that bulges have in all cases low Sersic indices, resembling observed pseudo-bulges instead of classical ones. Simulated discs, bulges and bars generally have similar g - i colours, which are in the blue tail of the distribution of observed colours. This is not due to the presence of young stars, but rather due to low metallicities and poor gas content in the simulated galaxies, which makes dust extinction low. Photometric decompositions thus match the component ratios usually quoted for spiral galaxies better than kinematic decompositions, but the shift is insufficient to make the simulations consistent with observed late-type systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据