4.6 Article

Altered mTOR Signaling in Senescent Retinal Pigment Epithelium

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 51, 期 10, 页码 5314-5319

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.10-5280

关键词

-

资金

  1. National Institutes of Health [EY07892, EY08126, EY018715]
  2. Research to Prevent Blindness, Inc.
  3. International Retinal Research Foundation

向作者/读者索取更多资源

PURPOSE. Mammalian target of rapamycin (mTOR)-mediated pathways play central roles in regulating aging. The purpose of the present study was to characterize the mTOR cascade in human retinal pigment epithelial (RPE) cells and to investigate its potential roles in controlling RPE senescence. METHODS. Expression of major components of the mTOR signaling networks was evaluated by Western blot analyses. Formations of the two signaling complexes of mTOR, mTORC1, and mTORC2 were determined by coimmunoprecipitation. The activation of mTORC1 was monitored by measuring the phosphorylation status of the downstream substrate protein S6. Senescence of the cultured human RPE cells was assessed by measuring both the senescence associated-beta-galactosidase (SA-beta-Gal) activity and the expression level of p16, a cyclin-dependent kinase inhibitor. RESULTS. Human RPE cells contained functional mTORC1 and mTORC2 signaling complexes. The assembly and activity of mTORC1 were regulated by upstream nutrient and growth factor signals. The sensitivity of mTORC1 to extracellular nutrient stimuli increased in RPE cells that had developed in vitro senescence. Suppression of the mTORC1 by rapamycin prevented the appearance of senescence markers in the RPE. CONCLUSIONS. The mTOR pathway presented age-associated changes in human RPE cells, and downregulation of mTORC1 could delay the aging process of the RPE. (Invest Ophthalmol Vis Sci. 2010;51:5314-5319) DOI:10.1167/iovs.10-5280

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据