4.6 Article

Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00759.2014

关键词

mitochondria; endothelium; uncoupling protein; antioxidative activity; bioenergetics; high glucose levels

资金

  1. European Union
  2. European Regional Development Fund under Innovative Economy Programme [POIG.01.01.02-00-069/09]
  3. National Science Center [2012/07/N/NZ3/00495]
  4. KNOW Poznan RNA Centre Grant [01/KNOW2/2014]

向作者/读者索取更多资源

The endothelium is relatively independent of the mitochondrial energy supply, but mitochondria-derived ROS may play an important role in the development of many cardiovascular diseases. Energy-dissipating uncoupling proteins (UCPs) mediate free fatty acid-activated, purine nucleotide-inhibited proton conductance (uncoupling) in the inner mitochondrial membrane. We have described a functional characteristic and an antioxidative role for UCP2 in endothelial cells and isolated mitochondria and how this function is altered by long-term growth in high concentrations of glucose. Human umbilical vein endothelial cells (EA.hy926 line) were grown in media with either high (25 mM) or normal (5.5 mM) glucose concentrations. Under nonphosphorylating and phosphorylating conditions, UCP activity was significantly higher in mitochondria isolated from high glucose-treated cells. More pronounced control of the respiratory rate, membrane potential, and ROS by UCP2 was observed in these mitochondria. A greater UCP2-mediated decrease in ROS generation indicates an improved antioxidative role for UCP2 under high glucose conditions. Mitochondrial and nonmitochondrial ROS generations were significantly higher in high glucose-treated cells independent of UCP2 expression. UCP2 gene silencing led to elevated mitochondrial ROS formation and ICAM1 expression, especially in high glucose-cultured cells. UCP2 influenced endothelial cell viability and resistance to oxidative stress. Endothelial cells exposed to high glucose concentrations were significantly more resistant to peroxide. In these cells, the increased activity of UCP2 led to improved stress resistance and protection against acute oxidative stress. Our results indicate that endothelial UCP2 may function as a sensor and negative regulator of mitochondrial ROS production in response to hyperglycemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据