4.5 Article

Fundamental solutions of cavitation in porous solids: a comparative study

期刊

ACTA MECHANICA
卷 224, 期 8, 页码 1695-1707

出版社

SPRINGER WIEN
DOI: 10.1007/s00707-013-0837-y

关键词

-

向作者/读者索取更多资源

The expansion of internally pressurized cavities, embedded in infinite bodies, in spherical and cylindrical (plane strain and plane stress) configurations, is investigated within the framework of finite plasticity. Material response is modeled by the Gurson theory for porous solids and includes strain hardening. Numerical results, obtained under the assumption of nearly universal loading histories, reveal limit cavitation states for all three deformation patterns. Cavitation is identified with asymptotic levels of the specific cavitation energy, which is highest for the spherical cavity and smallest for plane stress (plate) holes. The influence of material porosity is assessed in context of weight optimization of protective plates. A limited comparison with experimental data for porous titanium plate perforation reveals close prediction of ballistic limit velocity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据