4.8 Article

The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors

期刊

NATURE MATERIALS
卷 9, 期 12, 页码 1004-1009

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2875

关键词

-

资金

  1. Dutch Science Foundation
  2. NWO, The Netherlands
  3. European Community [NMP4-CT-2006-033277 TEM-PLANT]

向作者/读者索取更多资源

Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals(1,2). In the periodic 67nm cross-striated pattern of the collagen fibril(3-5), the less dense 40 nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow(6-9). This process is believed to be directed by highly acidic non-collagenous proteins(6,7,9-11); however, the role of the collagen matrix(12-14) during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography(15) with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据