4.7 Article

The mechanisms of ductile rupture

期刊

ACTA MATERIALIA
卷 161, 期 -, 页码 83-98

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2018.09.006

关键词

Ductile fracture; Damage nucleation; Failure mechanism; Strain localization; Shear

资金

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]

向作者/读者索取更多资源

One of the most confounding controversies in the ductile fracture community is the large discrepancy between predicted and experimentally observed strain-to-failure values during shear-dominant loading. Currently proposed solutions focus on better accounting for how the deviatoric stress state influences void growth or on measuring strain at the microscale rather than the macroscale. While these approaches are useful, they do not address a significant aspect of the problem: the only rupture micro-mechanisms that are generally considered are void nucleation, growth, and coalescence (for tensile-dominated loading), and shear-localization and void coalescence (for shear-dominated loading). Current phenomenological models have thus focused on predicting the competition between these mechanisms based on the stress state and the strain-hardening capacity of the material. However, in the present study, we demonstrate that there are at least five other failure mechanisms. Because these have long been ignored, little is known about how all seven mechanisms interact with one another or the factors that control their competition. These questions are addressed by characterizing the fracture process in three high-purity face-centered cubic (FCC) metals of medium-to-high stacking fault energy: copper, nickel, and aluminum. These data demonstrate that, for a given stress state and material, several mechanisms frequently work together in a sequential manner to cause fracture. The selection of a failure mechanism is significantly affected by the plasticity-induced microstructural evolution that occurs before tearing begins, which can create or eliminate sites for void nucleation. At the macroscale, failure mechanisms that do not involve cracking or pore growth were observed to facilitate subsequent void growth and coalescence processes. While the focus of this study is on damage accumulation in pure metals, these results are also applicable to understanding failure in engineering alloys. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据