4.7 Article

Antithermal mobility in Σ7 and Σ9 grain boundaries caused by stick-slip stagnation of ordered atomic motions about Coincidence Site Lattice atoms

期刊

ACTA MATERIALIA
卷 162, 期 -, 页码 10-18

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2018.09.033

关键词

Grain boundary; Grain boundary migration; Mobility; Antithermal; Mobility

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0016441]
  2. U.S. Department of Energy (DOE) [DE-SC0016441] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Antithermal grain boundary migration is an interesting phenomenon that has been recently discovered. These grain boundaries behave opposite to what is expected of thermally activated grain boundary migration; the antithermal grain boundaries exhibit mobility that decreases with increasing temperature. Two recent studies have provided insight into important behaviors correlated with antithermal migration. O'Brien and Foiles (J Mater. Sci. Vol. 51, p. 6607-6623, 2016) demonstrated that the high mobility exhibited by an antithermal 27 grain boundary is enabled by ordered atomic motions. Ulomek and Mohles (Acta Mater. Vol. 103, p. 424-432, 2016) demonstrated that the thermal migration of a different Sigma 7 grain boundary exhibited a two-step migration process. In this work, we demonstrate that the antithermal temperature dependence exhibited by these types of grain boundaries is caused by a combination of these two discoveries. Specifically, ordered atomic motions about Coincidence Site Lattice atoms (atoms common to the lattices on either side of the grain boundary), seen by O'Brien and Foiles, are interrupted by additional thermal energy at higher temperature. This is the source of the two-step process seen by Ulomek and Mohles. This two-step process is akin to stick-slip behaviors observed in shear coupled grain boundary migration. As temperature is increased, the duration of the stagnant portion increases and the mobility decreases. This behavior is demonstrated through molecular dynamics simulations in nickel bicrystals over temperatures ranging from 100 to 1400 K for Sigma 7 and Sigma 9 grain boundaries. For these Sigma 7 and Sigma 9 grain boundaries, those that have ordered atomic mechanisms are almost exclusively antithermal, while those that do not have ordered atomic mechanisms are thermally activated. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据