4.7 Article

Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties

期刊

ACTA MATERIALIA
卷 67, 期 -, 页码 81-94

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2013.12.016

关键词

Calcium silicate hydrate (C-S-H); Water/Ca ratio; Molecular dynamics; Uniaxial tension/compression test

资金

  1. China Ministry of Science and Technology [2009CB623200]

向作者/读者索取更多资源

Calcium silicate hydrate (C-S-H) is the most important hydration product of cement-based materials. In the nanostructure of C-S-H, structural water molecules are distributed in the interlayer region and determine the mechanical performance of C-S-H gel. In this study, C-S-H gels with different water contents expressed as the water/Ca ratio are characterized in the light of molecular dynamics. In order to study the influence of the water molecules, the structures of 12 C-S-H gel samples with water/Ca ratios from 0 to 0.95 are investigated. It is found that the penetration of water molecules transforms the C-S-H gel from an amorphous to a layered structure by silicate depolymerization as the water content gradually increases. The structures are then tested for mechanical properties by simulated uniaxial tension and compression. The mechanical tests associated with structural analysis reveal that the structural water molecules can greatly weaken the stiffness and the cohesive force by replacing the ionic covalent bond with unstable H-bond connections. By studying the tensile failure mechanism of C-S-H gels at different humidity levels, the disconnecting role of the structural water molecules is comprehensively interpreted. Because the interlayer water molecules prevent reconstruction of the bonds between the Ca-w and the silicate chains, the plasticity of the C-S-H gels is reduced significantly in the change from a dry state to a saturated state. In addition, the compressive strength of a C-S-H gel in the saturated state is much larger than the tensile strength. This provides molecular evidence for the tensile weakness of cement paste. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据