4.7 Article

An extension of the Kampmann-Wagner numerical model towards as-cast grain size prediction of multicomponent aluminum alloys

期刊

ACTA MATERIALIA
卷 71, 期 -, 页码 380-389

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.03.028

关键词

Solidification modeling; Grain size prediction; Aluminum alloys; Precipitation modeling; CALPHAD

向作者/读者索取更多资源

The Kampmann-Wagner numerical (KWN) model, which has been widely adopted as a precipitation modeling framework accounting for concurrent nucleation, growth and coarsening kinetics, was extended to predict the as-cast grain size of inoculated multicomponent aluminum alloys. In the model, the heterogeneous nucleation of grains on inoculant particles was modeled based on the free growth criterion, while the influence of the solute on the nucleation behavior, in terms of the solute suppressed nucleation (SSN) effect, was rigorously defined and integrated. In order to fully address the solidification behavior of multicomponent alloys, a coupling of the KWN model to CALPHAD was carried out. These extensions allow the treatment of two different nucleation-ceasing mechanisms induced by grain growth: recalescence stifling and solute segregation stifling. Given melt composition, inoculation and heat extraction rate, the model is able to predict maximum nucleation undercooling, cooling curve and the final as-cast grain size of multicomponent alloys without invoking the binary equivalence assumption used in the existing models. The proposed model was tested with a variety of binary and multicomponent aluminum alloys, and the predictions were compared with the experimental measurement results and previous grain size prediction models. The simulation results show that the SSN effect has a negligible influence on the nucleation behavior and the final grain size during isothermal melt solidification, but a strong influence on the ceasing of grain nucleation during directional solidification. Reasonable agreement was obtained between the model prediction and measurement results on a direct chill casting experiment of an AA5182 alloy. Our work proves that the application of the precipitation modeling framework for the solidification problem is successful. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据