4.7 Article

Deformation behavior of solid-solution-strengthened Mg-9 wt.% Al alloy: In situ neutron diffraction and elastic-viscoplastic self-consistent modeling

期刊

ACTA MATERIALIA
卷 73, 期 -, 页码 139-148

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.03.038

关键词

Magnesium; Deformation; In situ neutron diffraction; EVPSC model; Lattice strain

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP) [2012M2B2A4029572, 2013R1A4A1069528]
  2. NSERC Magnesium Strategic Research Network (MagNET)
  3. Chungnam National University
  4. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy
  5. National Research Foundation of Korea [2012M2B2A4029572, 2013R1A4A1069528] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In situ neutron diffraction and elastic-viscoplastic self-consistent (EVPSC) modeling have been employed to understand the deformation mechanisms of the loading-unloading process under uniaxial tension in a solid-solution-strengthened extruded Mg-9 wt.% Al alloy. The initial texture measured by neutron diffraction shows that the {00.2} basal planes in most grains are tilted around 20-30 from the extrusion axis, indicating that basal slip should be easily activated in a majority of grains under tension. Non-linear stress strain responses are observed during unloading and reloading after the material is fully plastically deformed under tension. In situ neutron diffraction measurements have also demonstrated the non-linear behavior of lattice strains during unloading and reloading, revealing that load redistribution continuously occurs between soft and hard grain orientations. The predicted macroscopic stress-strain curve and the lattice strain evolution by the EVPSC model are in good agreement with the experimental data. The EVPSC model provides the relative activities of the available slip and twinning modes, as well as the elastic and plastic strains of the various grain families. It is suggested that the non-linear phenomena in the macroscopic stress-strain responses and microscopic lattice strains during unloading and reloading are due to plastic deformation by the operation of basal (a) slip in the soft grain orientations (e.g. {10.1}, {11.2} and {10.2} grain families). (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据