4.7 Article

Solute strengthening of twinning dislocations in Mg alloys

期刊

ACTA MATERIALIA
卷 80, 期 -, 页码 278-287

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.07.045

关键词

Mg alloys; Twinning; DFT calculations

资金

  1. NSF-GOALI Grant [1309687]
  2. General Motors/Brown Collaborative Laboratory for Computational Materials Research
  3. European Research Council [339081-PreCoMet]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1309687] Funding Source: National Science Foundation

向作者/读者索取更多资源

Solute strengthening of twin dislocation motion along an existing twin boundary in Mg-X (X = Al, Zn) is investigated using a new Labusch-type weak pinning model. First, the (10 (1) over bar2) twinning dislocation structure is computed using first-principles methods. Second, the interaction energies of Al and Zn solutes with the twin boundary and twin dislocation are computed. It is shown that the interaction energies of Zn solutes scale with the Al solute energies in proportion to the misfit volume plus an additional chemical interaction factor, demonstrating an efficient means for estimating the solute energies of other solutes. Third, the solute-dislocation interaction energies are used in a new Labusch-type model to predict the overall solute strengthening of the twinning dislocation. New features emerge in the application of the model to twinning because of the very small Burgers vector of the twin dislocation, leading to a new functional form for the dependence of the strengthening on concentration, temperature and strain rate. Fourth, application of the model leads to parameter-free predictions that agree well with available experimental data on various Mg-Al-Zn alloys. The predicted strengthening is not large, e.g. approximate to 10 MPa for the AZ31 alloy at room temperature, but is larger than the strengthening of basal slip by the same solutes. Overall, this work demonstrates the ability of mechanistic theories to provide a quantitative understanding of alloying effects on deformation modes in Mg. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据