4.7 Article

Advances and new directions in gas-sensing devices

期刊

ACTA MATERIALIA
卷 61, 期 3, 页码 974-1000

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2012.10.041

关键词

Gas sensors; Operating principles; Response mechanisms; Nanostructured architectures; Semiconducting oxides

资金

  1. National Science Foundation, Division of Materials Research, Materials World Network [DMR-0908627]
  2. Korea Research Council Industrial Science and Technology [B551179-10-01-00]
  3. Brazil-MIT program, Department of Energy, Basic Energy Sciences [DE SC0002633]
  4. Engineering Research Center program from the Korean National Research Foundation [ERC-N01120073]
  5. Korean Ministry of Research [N01120137]
  6. Israeli Ministry of Science and Technology [3-8272]
  7. Center for Integrated Smart Sensors
  8. Ministry of Education, Science and Technology as Global Frontier Project [CISS-2012M3A6A6054188]
  9. US-Israel Binational Science Foundation (BSF) [2006295]
  10. Directorate For Geosciences
  11. Division Of Ocean Sciences [2006295] Funding Source: National Science Foundation

向作者/读者索取更多资源

Gas sensors are employed in many applications including detection of toxic and combustible gases, monitoring emissions from vehicles and other combustion processes, breath analysis for medical diagnosis, and quality control in the chemicals, food and cosmetics industries. Many of these applications employ miniaturized solid-state devices, whose electrical properties change in response to the introduction of chemical analytes into the surrounding gas phase. Key challenges remain as to how to optimize sensor sensitivity, selectivity, speed of response and stability. The principles of operation of such devices vary and a brief review of operating principles based on potentiometric/amperometric, chemisorptive, redox, field effect and nanobalance approaches is presented. Due to simplicity of design and ability to stand up to harsh environments, metal oxide-based chemoresistive devices are commonly selected for these purposes and are therefore the focus of this review. While many studies have been published on the operation of such devices, an understanding of the underlying physicochemical principles behind their operation have trailed behind their technological development. In this article, a detailed review is provided which serves to update progress made along these lines. The introduction of nanodimensioned materials has had a particularly striking impact on the field over the past decade. Advances in materials processing has enabled the fabrication of tailored structures and morphologies offering, at times, orders of magnitude improvements in sensitivity, while high-resolution analytical methods have enabled a much improved examination of the structure and chemistry of these materials. Selected examples, illustrating the type of nanostructured devices being fabricated and tested, are discussed. This review concludes by highlighting trends suggesting directions for future progress. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据