4.7 Article

Shape memory behavior of high strength NiTiHfPd polycrystalline alloys

期刊

ACTA MATERIALIA
卷 61, 期 13, 页码 5036-5049

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2013.04.039

关键词

Shape memory alloys; Phase transformation; High strength alloys; Precipitation; Mechanical characterization

资金

  1. NASA Fundamental Aeronautics Program
  2. Aeronautical Sciences Project
  3. NASA EPSCOR program [NNX11AQ31A]
  4. KY EPSCoR RID program [3049024332]
  5. RFBR project [10-03-0154-a]

向作者/读者索取更多资源

Systematic characterization of the shape memory properties of a quaternary Ni-45.3-Ti-29.7 Hf-20-Pd-5 (at.%) polycrystalline alloy was performed in compression after selected aging treatments. Precipitation characteristics were revealed by transmission electron microscopy. The effects of aging temperature and time on transformation temperatures, recoverable and residual strains, and temperature and stress hystereses were determined by differential scanning calorimetry, constant-load thermal cycling experiments and isothermal strain cycling (superelasticity) tests. The crystal structure and lattice parameters of the transforming phases were determined from X-ray diffraction analysis. It was revealed that precipitation hardening significantly improved the shape memory properties of the NiTiHfPd alloy. Under optimum aging conditions, shape memory strains of up to 4% under 1 GPa were possible, and superelasticity experiments resulted in full strain recovery without any plastic deformation, even at stress levels as high as 2 GPa. The NiTiHfPd polycrystalline alloy exhibited very high damping capacity/absorbed energy (30-34 J cm(-3)) and work output (30-35 J cm(-3)), which were attributed to the ability to operate at high stress levels without significant plastic deformation and to a high mechanical hysteresis (>900 MPa) at temperatures ranging from 20 degrees C to 80 degrees C. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据