4.7 Article

The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study

期刊

ACTA MATERIALIA
卷 61, 期 18, 页码 6857-6867

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2013.07.064

关键词

First-principles calculation; Dislocations; Hydrogen embrittlement; Hydrogen enhanced localized plasticity

向作者/读者索取更多资源

We investigate the effect of hydrogen on the mobility of a screw dislocation in body-centered cubic (bcc) iron using first-principles calculations, and show that an increase of screw dislocation velocity is expected for a limited temperature range. The interaction energy between a screw dislocation and hydrogen atoms is calculated for various hydrogen positions and dislocation configurations with careful estimations of the finite-size effects, and the strongest binding energy of a hydrogen atom to the stable screw dislocation configuration is estimated to be 256 +/- 32 meV. These results are incorporated into a line tension model of a curved dislocation line to elucidate the effect of hydrogen on the dislocation migration process. Both the softening and hardening effect of hydrogen, caused by the reduction of kink nucleation enthalpy and kink trapping, respectively, are evaluated. A clear transition between softening and hardening behavior at the lower critical temperature is predicted, which is in qualitative agreement with experimental observation. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据