4.7 Article

Manifestation of external size reduction effects on the yield point of nanocrystalline rhodium using nanopillars approach

期刊

ACTA MATERIALIA
卷 61, 期 1, 页码 40-50

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2012.09.009

关键词

Nanopillars; Nanocrystalline materials; Nanomechanics; Size effect; Rhodium

资金

  1. King Saud University

向作者/读者索取更多资源

In this study, pure rhodium was fabricated and mechanically investigated at the nanoscale for the first time. The nanopillars approach was employed to study the effects of size on the yield point. Nanopillars with different diameters were fabricated using electroplating followed by uniaxial compression tests. Scanning electron microscopy (SEM) was used as a quality control technique by imaging the pillars before and after compression to ensure the absence of cracks, buckling, barrelling or any other problems. Transmission electron microscopy and SEM were used as microstructural characterization techniques. Due to substrate-induced effects, only the plastic region of the stress strain curves were investigated, and it was revealed that the yield point increases with size reduction up to certain limit, then decreases with further reduction of the nanopillar size (diameter). The later weakening effect is consistent with the literature, which demonstrates the reversed size effect (the failure of the plasticity theory) in nanocrystalline metals, i.e. smaller is weaker. In this study, however, the effect of size reduction is not only weakening, but is strengthening-then-weakening, which the authors believe is the true behavior of nanocrystalline materials. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据