4.7 Article

A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron

期刊

ACTA MATERIALIA
卷 60, 期 9, 页码 3748-3757

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2012.03.041

关键词

Dislocation dynamics; Plastic deformation; Modeling and simulation; Irradiated ferritic steels

资金

  1. US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. Office of Nuclear Energy in the US Department of Energy

向作者/读者索取更多资源

Low temperature irradiation of crystalline materials is known to result in hardening and loss of ductility, which limits the usefulness of candidate materials in harsh nuclear environments. In body-centered cubic (bcc) metals, this mechanical property degradation is caused by the interaction of in-grown dislocations with irradiation defects, particularly small dislocation loops resulting from the microstructural evolution of displacement cascades. In this paper, we perform dislocation dynamics simulations of bcc Fe containing various concentrations of dislocation loops produced by irradiation in an attempt to gain insight into the processes that lead to hardening and embrittlement. We find that a transition from homogenous to highly localized deformation occurs at a critical loop density. Above it, plastic flow proceeds heterogeneously, creating defect-free channels in its wake. We find that channel initiation and size are mediated by loop coalescence resulting from elastic interactions with moving dislocations. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据