4.7 Article

Geometric characterization of nanoporous metals

期刊

ACTA MATERIALIA
卷 60, 期 17, 页码 6164-6174

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2012.07.059

关键词

Nanoporous metals; Dealloying; Coarsening; Topology

资金

  1. US National Science Foundation [DMR-1003901]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1003901] Funding Source: National Science Foundation

向作者/读者索取更多资源

Nanoporous metals made by dealloying possess significant geometric complexity-they are random, bicontinuous structures that also possess bubbles within ligaments, regions of very high negative, positive, and saddlepoint curvature, and significant polyfaceting. Here we introduce methods to geometrically quantify the structure of nanoporous metals employing simulated model nanoporous metals generated via large-scale kinetic Monte Carlo simulations as the basis of discussion. A method is introduced to transform these simulated structures into smooth triangulated meshes using new mesh-smoothing algorithms that hybridize mean curvature flow and signal processing approaches to mesh fairing. The technique is assessed by comparing the exact genus of high-genus meshes with the genus calculated via the Gauss-Bonnet formula, and works well to find the local curvature at all points of simulated surfaces of high topological genus. Specific geometric quantification of nanoporous metals is discussed for two quantities: (i) the relative surface area fraction of different crystal facets, which is important for catalysis; and (ii) the curvature distribution on the surface of porous metals, important for applications in which high curvature features are active (e.g. optical sensing). (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据