4.7 Article

Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials

期刊

ACTA MATERIALIA
卷 60, 期 15, 页码 5448-5467

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2012.07.011

关键词

Indentation cracking; Four-sided pyramidal indentation; Cohesive interface model; Lawn-Evans-Marshall model

资金

  1. NSF CMMI [0926798]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [0926798] Funding Source: National Science Foundation

向作者/读者索取更多资源

Cracks in brittle solids induced by pyramidal indenters are ideal for toughness evaluation since the indentation stress fields decay rapidly from the contact center and any cracks will be eventually arrested. Thus, if the applied energy release rate can be determined analytically, the material toughness can be deduced by measuring the crack length. However, such a driving force calculation is a nontrivial task because of the complex stress fields; only a number of limit cases can be solved, such as the long half-penny cracks (at least two times larger than the contact size) in the classic Lawn-Evans-Marshall (LEM) model. Important questions such as the evolution from short cracks to median/radial and then to half-penny cracks, the form of the scaling relationship that relates fracture toughness to material hardness and indenter angles, the threshold load for indentation cracking, etc., cannot easily be answered without a detailed knowledge of the co-evolution history of the stress fields and crack morphology. To this end, a finite element model of four-sided pyramidal indentation adopting cohesive interface elements is developed to study the effects of indenter geometry, load, cohesive interface parameters, and material properties on the initiation and propagation of the median/radial/half-penny crack systems. The validity and artifacts of the cohesive interface model are carefully examined, and the crack morphologies under various indentation and material parameters are systematically studied. Numerical predictions lead to a quantitative evaluation of the threshold load for indentation fracture, and an improved method for the evaluation of material toughness from the indentation load, crack size, hardness, elastic constants, and indenter geometry, which compare favorably to a large set of experiments in the literature. It is also found that the toughness evaluation method is very sensitive to Poisson's ratio - an observation that has previously received little attentions. An approximate analysis for short cracks is developed based on the fracture mechanics of annular cracks and the embedded-center-of-dilatation model for indentation-induced residual stress fields. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据