4.7 Article

Effect of multimodal microstructure evolution on mechanical properties of Mg-Zn-Y extruded alloy

期刊

ACTA MATERIALIA
卷 59, 期 9, 页码 3646-3658

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2011.02.038

关键词

Magnesium alloys; Extrusion; Dynamic recrystallization; Texture

资金

  1. JST
  2. MEXT, Japan [2086050, 19206075]
  3. Grants-in-Aid for Scientific Research [19206075, 23246122] Funding Source: KAKEN

向作者/读者索取更多资源

A high strength Mg-Zn-Y alloy featuring increased ductility and a multimodal microstructure is developed. The microstructure of the extruded Mg-Zn-Y alloy consists of three regions: a dynamically recrystallized alpha-Mg fine-grain region with random orientation; a hot-worked alpha-Mg coarse-grain region with strong basal texture; and a long-period stacking ordered (LPSO) phase grain region. Having found that bimodal microstructure evolution in the alpha-Mg matrix is influenced by the morphology of the LPSO phase in the as-cast state, the authors investigate the effect of secondary dendrite arm spacing (SDAS) in the cast state on the microstructure evolution and mechanical properties of the extruded Mg-Zn-Y alloy. Mg-Zn-Y alloy ingots with various SDAS are obtained by temperature-controlled solidification techniques at various cooling rates. Mg-Zn-Y ingots are extruded at 623 K and an extrusion ratio of 10. A decrease in SDAS is associated with dynamic recrystallization of the alpha-Mg phase region and a high dispersion of fiber-shaped LPSO phase during extrusion. An increase in dynamically recrystallized alpha-Mg grains with very weak texture improves ductility; the effective dispersion of the hot-worked alpha-Mg grains with a strong basal texture and the fiber-shaped LPSO phase grains conspire to strengthen the alloy. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据