4.7 Article

Size effects in Al nanopillars: Single crystalline vs. bicrystalline

期刊

ACTA MATERIALIA
卷 59, 期 11, 页码 4416-4424

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2011.03.065

关键词

Compression test; Nanoindentation; Electron backscatter diffraction; Interfaces; Aluminum

资金

  1. W.M. Keck Institute for Space Studies
  2. NSF [DMR-0748267]

向作者/读者索取更多资源

The mechanical behavior of bicrystalline aluminum nano-pillars under uniaxial compression reveals size effects, a stochastic stress-strain signature, and strain hardening. Pillar diameters range from 400 nm to 2 mu m and contain a single, non-sigma high angle grain boundary oriented parallel to the pillar axes. Our results indicate that these bicrystalline pillars are characterized by intermittent strain bursts and exhibit an identical size effect to their single crystalline counterparts. Further, we find that the presence of this particular grain boundary generally decreases the degree of work hardening relative to the single crystalline samples. These findings, along with transmission electron microscopy analysis, show that nano-pillar plasticity in the presence of a grain boundary is also characterized by dislocation avalanches, likely resulting from dislocation nucleation-controlled mechanisms, and that at these small length scales this grain boundary may serve as a dislocation sink rather than a dislocation source. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据