4.7 Article

Microporosity effects on cyclic plasticity and fatigue of LENS (TM)-processed steel

期刊

ACTA MATERIALIA
卷 58, 期 11, 页码 4029-4038

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2010.03.014

关键词

Fatigue micromechanism; (LENS (TM))-processed steel; Multistage fatigue modeling

资金

  1. TARDEC/ARMY
  2. Optimec
  3. Center for Advanced Vehicular Systems (CAVS) at Mississippi State University
  4. Department of Mechanical and Aerospace Engineering at Utah State University

向作者/读者索取更多资源

Special microstructures of the newly developed Laser Engineered Net Shaping (LENS (TM))-processed steel induce a new variability in fatigue damage formation and evolution mechanisms. The microporosity and mechanism of fatigue damage formation and growth were invested using X-ray computed tomography and scanning electron microscopy. Systematic observations were made of the variations in the fracture surfaces according to three fatigue damage evolution stages: fatigue crack formation (incubation), microstructurally/physically small cracks, and lone cracks. The fatigue crack was formed almost exclusively at the relatively large pores located at or near the specimen surface, with rare cases at incompletely melted power particles on the surface. Distributed cracks from large interior pores coalesced with each other in the microstructurally small crack regime to form the major critical crack that eventually fractured the specimen. This coalescence accelerated the fatigue crack growth, which in turn decreased the fatigue life but not significantly. In the long-crack regime, the fracture surface was rougher, but the overall surface tended to be perpendicular to the loading direction, indicating a Mode I type fracture. Cyclic strain-softening, with reduced strain-hardening, was also observed. The multistage fatigue model of McDowell et al. was used to capture the microstructure effects in the three fatigue damage evolution regimes, and the upper and lower bounds for the strain life are predicted. (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据