4.7 Article

In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals

期刊

ACTA MATERIALIA
卷 58, 期 14, 页码 4772-4782

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2010.05.013

关键词

Nanocrystalline materials; Plastic deformation; Yield phenomena; Microstructural heterogeneity; Thin films

资金

  1. National Science Foundation [NSF ECS-0304243, NSF CMMI-0728189]
  2. Materials Science Functional Materials and Nanostructures

向作者/读者索取更多资源

In situ transmission electron microscopy straining experiments with concurrent macroscopic stress-strain measurements were performed to study the effect of microstructural heterogeneity on the deformation behavior of nanocrystalline metal films. In microstructurally heterogeneous gold films (mean grain size d(m) = 70 nm) comprising randomly oriented grains, dislocation activity is confined to relatively larger grains, with smaller grains deforming elastically, even at applied strains approaching 1.2%. This extended microplasticity leads to build-up of internal stresses, inducing a large Bauschinger effect during unloading. Microstructurally heterogeneous aluminum films (d(m) = 140 nm) also show similar behavior. In contrast, microstructurally homogeneous aluminum films comprising mainly two grain families, both favorably oriented for dislocation glide, show limited microplastic deformation and minimal Bauschinger effect despite having a comparable mean grain size (d(m) = 120 nm). A simple model is proposed to describe these observations. Overall, our results emphasize the need to consider both microstructural size and heterogeneity in modeling the mechanical behavior of nanocrystalline metals. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据