4.7 Article

Migration and correlation in highly defective systems: Fast-diffusion in lithium oxide

期刊

ACTA MATERIALIA
卷 56, 期 6, 页码 1366-1373

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2007.11.027

关键词

diffusion mechanism; correlation factor; superionic conductor; molecular dynamics; Monte Carlo method

向作者/读者索取更多资源

The high-temperature superionic phase of lithium oxide is characterized by a high concentration of Frenkel defects and a diffusion mechanism involving several types of atomic jumps. We have calculated the tracer-correlation factor and analyzed the migration paths of the Li ions obtained by molecular dynamics (MD). A kinetic Monte Carlo code, simulating the lithium vacancy diffusion, has been developed and used to predict the correlation factor as a function of the atomic fraction of defects. There is a good agreement with the result directly obtained by MD. The analysis of the jump paths shows that the direct exchange between a vacancy and a migrating atom is the main part of the diffusion mechanism. The other atomic jumps, although complex, mostly imply vacancies. The Li+ fast-diffusion proceeds by a vacancy mechanism involving several jump types. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据