4.6 Article

Effects of Dimethyl Methylphosphonate, Aluminum Hydroxide, Ammonium Polyphosphate, and Expandable Graphite on the Flame Retardancy and Thermal Properties of Polyisocyanurate-Polyurethane Foams

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 54, 期 22, 页码 5876-5884

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.5b01019

关键词

-

向作者/读者索取更多资源

For the first time, a new flame-retardant formula based on dimethyl methylphosphonate (DMMP), aluminum hydroxide (ATH), ammonium polyphosphate (APP), and expandable graphite (EG) was applied to polyisocyanuratepolyurethane foams and found to exhibit a high flame-retardant efficiency and low cost, to be environmentally friendly, and to allow for the reduction of the amount of solid flame retardants added. The multiple effects were evaluated based on thermal conductivity tests, compressive strength tests, limiting oxygen index (LOI) measurements, cone calorimetry tests, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that ATH can form villi-like substances during the combustion process. In the presence of ATH and APP, dense spherical substances were produced. When EG was added to the system, a wormlike carbon layer that adsorbed phosphate-containing acid resulting from APP decomposition was formed during the decomposition process, so that the carbon layer was denser. The combined effects of the villi-like and spherical substances as well as the wormlike carbon layer can block heat and flame propagation from being transferred to the unburned foam.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据