4.6 Article

Early Gene Expression Changes in the Retinal Ganglion Cell Layer of a Rat Glaucoma Model

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 52, 期 3, 页码 1460-1473

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.10-5930

关键词

-

资金

  1. National Institutes of Health [EY01014, EY016866]
  2. Research to Prevent Blindness, Inc.

向作者/读者索取更多资源

PURPOSE. To identify patterns of early gene expression changes in the retinal ganglion cell layer (GCL) of a rodent model of chronic glaucoma. METHODS. Prolonged elevation of intraocular pressure (IOP) was produced in rats by episcleral vein injection of hypertonic saline (N = 30). GCLs isolated by laser capture microdissection were grouped by grading of the nerve injury (<25% axon degeneration for early injury; >25% for advanced injury). Gene expression was determined by cDNA microarray of independent GCL RNA samples. Quantitative PCR (qPCR) was used to further examine the expression of selected genes. RESULTS. By array analysis, 533 GCL genes (225 up, 308 down) were significantly regulated in early injury. Compared to only one major upregulated gene class of metabolism regulation, more were downregulated, including mitochondria, ribosome, proteasome, energy pathways, protein synthesis, protein folding, and synaptic transmission. qPCR confirmed an early upregulation of Atf3. With advanced injury, 1790 GCL genes were significantly regulated (997 up, 793 down). Altered gene categories included upregulated protein synthesis, immune response, and cell apoptosis and downregulated dendrite morphogenesis and axon extension. Of all the early changed genes, 50% were not present in advanced injury. These uniquely affected genes were mainly associated with upregulated transcription regulation and downregulated protein synthesis. CONCLUSIONS. Early GCL gene responses to pressure-induced injury are characterized by an upregulation of Atf3 and extensive downregulation in genes associated with cellular metabolism and neuronal functions. Most likely, these changes represent those specific to RGCs and are thus potentially important for enhancing RGC survival in glaucoma. (Invest Ophthalmol Vis Sci 2011;52:1160-1473) DOI:10.1167/iovs.10-5930

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据