4.4 Article

An emerging consensus for the structure of EmrE

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444908036640

关键词

-

向作者/读者索取更多资源

The archetypical member of the small multidrug-resistance family is EmrE, a multidrug transporter that extrudes toxic polyaromatic cations from the cell coupled to the inward movement of protons down a concentration gradient. The architecture of EmrE was first defined from the analysis of two-dimensional crystals by cryoelectron microscopy (cryoEM), which showed that EmrE was an unusual asymmetric dimer formed from a bundle of eight alpha-helices. The most favoured interpretation of the structure was that the monomers were oriented in opposite orientations in the membrane in an antiparallel orientation. A model was subsequently built based upon the cryo-EM data and evolutionary constraints and this model was consistent with mutagenic data indicating which amino-acid residues were important for substrate binding and transport. Two X-ray structures that differed significantly from the cryo-EM structure were subsequently retracted owing to a data-analysis error. However, the revised X-ray structure with substrate bound is extremely similar to the model built from the cryoEM structure (r.m.s.d. of 1.4 angstrom), suggesting that the proposed antiparallel orientation of the monomers is indeed correct; this represents a new structural paradigm in membrane-protein structures. The vast majority of mutagenic and biochemical data corroborate this structure, although cross-linking studies and recent EPR data apparently support a model of EmrE that contains parallel dimers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据