4.4 Article

Crystal packing of plant-type L-asparaginase from Escherichia coli

出版社

BLACKWELL PUBLISHING
DOI: 10.1107/S0907444907068072

关键词

-

向作者/读者索取更多资源

Plant-type L-asparaginases hydrolyze the side-chain amide bond of L-asparagine or its beta-peptides. They belong to the N-terminal nucleophile (Ntn) hydrolases and are synthesized as inactive precursor molecules. Activation occurs via the autoproteolytic release of two subunits, alpha and beta, the latter of which carries the nucleophile at its N-terminus. Crystallographic studies of plant-type asparaginases have focused on an Escherichia coli homologue (EcAIII), which has been crystallized in several crystal forms. Although they all belong to the same P2(1)2(1)2(1) space group with similar unit-cell parameters, they display different crystal-packing arrangements and thus should be classified as separate polymorphs. This variability stems mainly from different positions of the EcAIII molecules within the unit cell, although they also exhibit slight differences in orientation. The intermolecular interactions that trigger different crystal lattice formation are mediated by ions, which represent the most variable component of the crystallization conditions. This behaviour confirms recent observations that small molecules might promote protein crystal lattice formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据