4.5 Article

Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 300, 期 4, 页码 F999-F1007

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00621.2010

关键词

CXCL2; ischemia-reperfusion; uromodulin; acute kidney injury

资金

  1. American Society of Nephrology

向作者/读者索取更多资源

El-Achkar TM, McCracken R, Rauchman M, Heitmeier MR, Al-Aly Z, Dagher PC, Wu XR. Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am J Physiol Renal Physiol 300: F999-F1007, 2011. First published January 12, 2011; doi:10.1152/ajprenal.00621.2010.-Tamm-Horsfall protein (THP) is a glycoprotein expressed exclusively in thick ascending limbs (TAL) of the kidney. We recently described a novel protective role of THP against acute kidney injury (AKI) via downregulation of inflammation in the outer medulla. Our current study investigates the mechanistic relationships among the status of THP, inflammation, and tubular injury. Using an ischemia-reperfusion model in wild-type and THP-/- mice, we demonstrate that it is the S3 proximal segments but not the THP-deficient TAL that are the main targets of tubular injury during AKI. The injured S3 segments that are surrounded by neutrophils in THP-/- mice have marked overexpression of neutrophil chemoattractant MIP-2 compared with wild-type counterparts. Neutralizing macrophage inflammatory protein-2 (MIP-2) antibody rescues S3 segments from injury, decreases neutrophil infiltration, and improves kidney function in THP-/- mice. Furthermore, using immunofluorescence volumetric imaging of wild-type mouse kidneys, we show that ischemia alters the intracellular translocation of THP in the TAL cells by partially shifting it from its default apical surface domain to the basolateral domain, the latter being contiguous to the basolateral surface of S3 segments. Concomitant with this is the upregulation, in the basolateral surface of S3 segments, of the scavenger receptor SRB-1, a putative receptor for THP. We conclude that TAL affects the susceptibility of S3 segments to injury at least in part by regulating MIP-2 expression in a THP-dependent manner. Our findings raise the interesting possibility of a direct role of basolaterally released THP on regulating inflammation in S3 segments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据