4.2 Article

The Sagnac effect and pure geometry

期刊

AMERICAN JOURNAL OF PHYSICS
卷 83, 期 5, 页码 427-432

出版社

AMER ASSOC PHYSICS TEACHERS
DOI: 10.1119/1.4904319

关键词

-

向作者/读者索取更多资源

The Sagnac effect is usually deemed to be a special-relativistic effect produced in an interferometer when the device is rotating. Two light beams traveling around the interferometer in opposite directions require different times of flight to complete their closed path, giving rise to a phase shift proportional to the angular velocity of the apparatus. Here, we show that the same result can be obtained in the absence of rotation, when there is relative motion (be it inertial or not) between the source/receiver of light and the interferometer. Our argument will use both a simple algebraic analysis and a plain geometric approach in flat spacetime. We present an explicit example to illustrate our point and briefly discuss other apparently correct interpretations of the Sagnac effect, including an analogy to the Aharonov-Bohm effect. Finally, we sketch a possible application of the non-rotational Sagnac effect. (C) 2015 American Association of Physics Teachers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据