4.8 Article

Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts

期刊

ACTA BIOMATERIALIA
卷 10, 期 11, 页码 4618-4628

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2014.07.031

关键词

Small diameter vascular graft; Polyurethane; Dipyridamole; Electrospinning; Controlled release

资金

  1. University of Texas at Arlington
  2. American Heart Association the United States [14BGIA20510066, 13GRNT17330010]
  3. National Institutes of Health, the United States [HL118498]

向作者/读者索取更多资源

Acellular biodegradable small diameter vascular grafts (SDVGs) require antithrombosis, intimal hyperplasia inhibition and rapid endothelialization to improve the graft patency. However, current antithrombosis and antiproliferation approaches often conflict with endothelial cell layer formation on SDVGs. To address this limitation, biodegradable elastic polyurethane urea (BPU) and the drug dipyridamole (DPA) were mixed and then electrospun into a biodegradable fibrous scaffold. The BPU would provide the appropriate mechanical support, while the DPA in the scaffold would offer biofunctions as required above. We found that the resulting scaffolds had tensile strengths and strains comparable with human coronary artery. The DPA in the scaffolds was continuously released up to 91 days in phosphate buffer solution at 37 degrees C, with a low burst release within the first 3 days. Compared to BPU alone, improved non-thrombogenicity of the DPA-loaded BPU scaffolds was evidenced with extended human blood clotting time, lower TAT complex concentration, lower hemolysis and reduced human platelet deposition. The scaffolds with a higher DPA content (5 and 10%) inhibited proliferation of human aortic smooth muscle cell significantly. Furthermore, the DPA-loaded scaffolds had no adverse effect on human aortic endothelial cell growth, yet it improved their proliferation. The attractive mechanical properties and biofunctions of the DPA-loaded BPU scaffold indicate its potential as an acellular biodegradable SDVG for vascular replacement. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据