4.8 Article

Direct synthesis of heparin-like poly(ether sulfone) polymer and its blood compatibility

期刊

ACTA BIOMATERIALIA
卷 9, 期 11, 页码 8851-8863

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2013.07.010

关键词

Heparin-like poly(ethersulfone); Polycondensation; Hydrophilicity group; Blood compatibility

资金

  1. National Natural Science Foundation of China [51073105, 51173119, 51225308]
  2. State Education Ministry of China (Doctoral Program for High Education) [20100181110031]

向作者/读者索取更多资源

In this study, heparin-like poly(ethersulfone) (HLPES) was synthesized by a combination of polycondensation and post-carboxylation methods, and was characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance hydrogen spectrum and gel permeation chromatography. Owing to the similar backbone structure, the synthesized HLPES could be directly blended with pristine PES at any ratios to prepare PES/HLPES membranes. After the introduction of HLPES, the microscopic structure of the modified PES membranes was changed, while the hydrophilicity was significantly enhanced. Bovine serum albumin and bovine serum fibrinogen adsorption, activated partial thromboplastin time, thromb time and platelet adhesion for the modified PES membranes were investigated. The results indicated that the blood compatibility of the PES/HLPES membranes was significantly improved compared with that of pristine PES membrane. For the PES/HLPES membranes, obvious decreases in platelet activation on PF-4 level, in complement activation on C3a and C5a levels, and in leukocytes activation on CD11b levels were observed compared with those for the pristine PES membrane. The improved blood compatibility of the PES/HLPES membrane might due to the existence of the hydrophilic groups (-SO3Na, -COONa). Furthermore, the modified PES membranes showed good cytocompatibility. Hepatocytes cultured on the PES/HLPES membranes presented improved growth in terms of SEM observation, MTT assay and confocal laser scanning microscope observation compared with those on the pristine PES membrane. These results indicate that the PES/HLPES membranes present great potential in blood-contact fields such as hemodialysis and bio-artificial liver supports. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据