4.8 Article

Functionalized, biodegradable hydrogels for control over sustained and localized siRNA delivery to incorporated and surrounding cells

期刊

ACTA BIOMATERIALIA
卷 9, 期 1, 页码 4487-4495

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2012.08.012

关键词

Dextran; Injectable biomaterials; Controlled delivery; Photopolymerization; RNA interference

资金

  1. National Institutes of Health [R21DE022376]
  2. Ohio Department of Development [08-081]

向作者/读者索取更多资源

Currently, the most severe limitation to applying RNA interference technology is delivery, including localizing the molecules to a specific site of interest to target a specific cell population and sustaining the presentation of these molecules for a controlled period of time. In this study, we engineered a functionalized, biodegradable system created by covalent incorporation of cationic linear polyethyleneimine (LPEI) into photocrosslinked dextran (DEX) hydrogels through a biodegradable ester linkage. The key innovation of this system is that control over the sustained release of short interference RNA (siRNA) was achieved, as LPEI could electrostatically interact with siRNA to maintain siRNA within the hydrogels and degradation of the covalent ester linkages between the LPEI and the hydrogels led to tunable release of LPEI/siRNA complexes over time. The covalent conjugation of LPEI did not affect the swelling or degradation properties of the hydrogels, and the addition of siRNA and LPEI had minimal effect on their mechanical properties. These hydrogels exhibited low cytotoxicity against human embryonic kidney 293 cells (HEK293). The release profiles could be tailored by varying DEX (8 and 12% w/w) and LPEI (0, 5, 10 mu g/100 mu 1 gel) concentrations with nearly 100% cumulative release achieved at day 9 (8% w/w gel) and day 17 (12% w/w gel). The released siRNA exhibited high bioactivity with cells surrounding and inside the hydrogels over an extended time period. This controllable and sustained siRNA delivery hydrogel system that permits tailored siRNA release profiles may be valuable to guide cell fate for regenerative medicine and other therapeutic applications such as cancer treatment. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据