4.8 Article

In vitro bone exposure to strontium improves bone material level properties

期刊

ACTA BIOMATERIALIA
卷 9, 期 6, 页码 7005-7013

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2013.02.037

关键词

Strontium; Intrinsic bone mechanical properties; Nanoindentation; Elastic modulus; Hardness

向作者/读者索取更多资源

In rats treated with strontium ranelate, the ultimate load of intact bone is increased and associated with changes in microstructure and material level properties. Evaluation by micro-computed-tomography-based finite element analysis has shown that these changes independently contribute to the improvement of bone strength induced by strontium ranelate treatment. However, the mechanism by which Sr ion acts on bone material level properties remains unknown. The vertebrae of intact female rats were exposed overnight to 0.5, 1 or 2 M chloride salt solutions of Sr, Ca and Ba. The latter two were used to assess the specificity of Sr. Bone material level properties were evaluated by measuring hardness, elastic modulus and working energy in a nanoindentation test. Wavelength dispersive X-ray spectroscopy provided semi-quantitative elemental analysis and mapping. Incubation with Sr rendered bone stiffer, harder and tougher. Among the divalent ions tested, Sr had the greatest effect. Sr affinity was also assessed on in vivo treated bone specimens. After in vitro exposure, the highest improvements were observed in ovariectomized rats. However, anti-osteoporotic treatments did not influence the capacity of Sr to modify bone material level properties. Our findings demonstrated that in vitro incubation with Sr selectively improved bone material level properties, which may contribute to the macroscopic increase of bone properties observed under Sr therapy. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据