4.8 Article

Osteointegration of titanium implant is sensitive to specific nanostructure morphology

期刊

ACTA BIOMATERIALIA
卷 8, 期 5, 页码 1976-1989

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2012.01.021

关键词

Nanosurface modification; Titanium; Hydrothermal; Implant; In vivo osteointegration

资金

  1. DBT, Government of India
  2. DST, Government of India
  3. CSIR India

向作者/读者索取更多资源

An important aspect of orthopedic implant integration is the enhancement of functional activity of osteoblasts at the tissue-implant interface without any fibrous tissue intervention. Nanostructured implant surfaces are known to enhance osteoblast activity. Previously, we have reported a simple hydrothermal method for the fabrication of non-periodic nanostructures (nanoscaffold, nanoleaves and nanoneedles) on titanium implants showing good biocompatibility and a distinct osteoblast response in vitro in terms of osteoblast adhesion to the surface. In the present work, these nanostructures have been evaluated for their detailed in vitro cellular response as well as in vivo osteointegration. Our studies showed that a specific surface nanomorphology, viz. nanoleaves, which is a network of vertically aligned, non-periodic, leaf-like structures with thickness in the nanoscale, provided a distinct increase in osteoblast cell proliferation, alkaline phosphatase (ALP) activity and collagen synthesis compared to several other types of nanomorphology, such as nanotubes, nanoscaffold and nanoneedles (rods). Gene expression analysis of ALP, osteocalcin, collagen, decorin and Runx2 showed similar to 20- to 40-fold up-regulation on the leaf-like topography. Cytoskeletal arrangement studies on this substrate again revealed a unique response with favorable intracellular protein expressions of vinculin, FAK and src. In vivo osteointegration study over 12 weeks on rat model (Sprague-Dawley) showed early-stage bone formation (60% bone contact by week 2 and similar to 85% by week 8, p < 0.01) in the leaf-like nanopattern, without any inflammatory cytokine production. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据