4.8 Article

Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes

期刊

ACTA BIOMATERIALIA
卷 7, 期 2, 页码 505-514

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2010.08.027

关键词

Poly(1,8-octanediol-co-citrate) scaffold; Pore shape; Permeability; Mechanical properties; Cartilage

资金

  1. NIH [R01 AR 053379]

向作者/读者索取更多资源

The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol-co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6 weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies. (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据