4.8 Article

The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering

期刊

ACTA BIOMATERIALIA
卷 7, 期 1, 页码 152-162

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2010.07.034

关键词

Alginate scaffolds; Cardiac tissue engineering; Cardiomyocytes; Nonmyocyte; RGD peptide

资金

  1. Israel Science Foundation

向作者/读者索取更多资源

Cardiac tissue engineering aims to regenerate damaged myocardial tissues by applying heart patches created in vitro. The present study was undertaken to explore the possible role of matrix-attached RGD peptide in the engineering of cardiac tissue within macroporous scaffolds. Neonatal rat cardiac cells were seeded into RGD-immobilized or unmodified alginate scaffolds. The immobilized RGD peptide promoted cell adherence to the matrix, prevented cell apoptosis and accelerated cardiac tissue regeneration. Within 6 days, the cardiomyocytes reorganized their myofibrils and reconstructed myofibers composed of multiple cardiomyocytes in a typical myofiber bundle. The nonmyocyte cell population, mainly cardiofibroblasts, benefited greatly from adhering to the RGD-alginate matrix and consequently supported the cardiomyocytes. They often surrounded bundles of cardiac myofibers in a manner similar to that of native cardiac tissue. The benefits of culturing the cardiac cells in RGD-immobilized alginate scaffolds were further substantiated by Western blotting, revealing that the relative expression levels of alpha-actinin, N-cadherin and connexin-43 were better maintained in cells cultured within these scaffolds. Collectively, the immobilization of RGD peptide into macroporous alginate scaffolds proved to be a key parameter in cardiac tissue engineering, contributing to the formation of functional cardiac muscle tissue and to a better preservation of the regenerated tissue in culture. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据