4.8 Article

In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation

期刊

ACTA BIOMATERIALIA
卷 7, 期 6, 页码 2585-2592

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2011.02.021

关键词

Hydroxyapatite; Biopolymer; Scaffold; Biocompatibility; Bone

资金

  1. NSF [BES-0503315]

向作者/读者索取更多资源

Highly porous hydroxyapatite (HA)/poly(L-lactide) (PLLA) nanofibrous scaffolds were prepared by incorporating needle-shaped nano- or micro-sized HA particles into PLLA nanofibers using electrospinning. The scaffolds had random or aligned fibrous assemblies and both types of HA particles were perfectly oriented along the fiber long axes. The biocompatibility and cell signaling properties of these scaffolds were evaluated by in vitro culture of rat osteosarcoma ROS17/2.8 cells on the scaffold surface. Cell morphology, viability and alkaline phosphatase (ALP) activity on each scaffold were examined at different time points. The HA/PLLA scaffolds exhibited higher cell viability and ALP activity than a pure PLLA scaffold. In addition, micro-sized HA particles supported cell proliferation and differentiation better than nano-sized ones in random scaffolds through a 10 day culture period and in aligned scaffolds at an early culture stage. The fibrous assembly of the scaffold had a pronounced impact on the morphology of the cells in direct contact with the scaffold surface, but not on cell proliferation and differentiation. Thus, HA/PLLA nanofibrous scaffolds could be good candidates for bone tissue engineering. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据