4.8 Article

Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures

期刊

ACTA BIOMATERIALIA
卷 6, 期 7, 页码 2711-2720

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2010.01.016

关键词

Cell adhesion; Silicon; Scaffold; Surface roughness; Surface energy

资金

  1. European Commission [RII3-CT-2003-506350]

向作者/读者索取更多资源

The aim of this study is to investigate fibroblast cell adhesion and viability on highly rough three-dimensional (3D) silicon (Si) surfaces with gradient roughness ratios and wettabilities. Culture surfaces were produced by femtosecond (fs) laser structuring of Si wafers and comprised forests of conical spikes exhibiting controlled dual-scale roughness at both the micro- and the nano-scale. Variable roughness could be achieved by changing the laser pulse fluence and control over wettability and therefore surface energy could be obtained by covering the structures with various conformal coatings, which altered the surface chemistry without, however, affecting morphology. The results showed that optimal cell adhesion was obtained for small roughness ratios, independently of the surface wettability and chemistry, indicating a non-monotonic dependence of fibroblast adhesion on surface energy. Additionally, it was shown that, for the same degree of roughness, a proper change in surface energy could switch the behaviour from cell-phobic to cell-philic and vice versa, transition that was always correlated to surface wettability. These experimental findings are discussed on the basis of previous theoretical models describing the relation of cell response to surface energy. The potential use of the patterned Si substrates as model scaffolds for the systematic exploration of the role of 3D micro/nano morphology and/or surface energy on cell adhesion and growth is envisaged. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据