4.8 Article

Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds

期刊

ACTA BIOMATERIALIA
卷 6, 期 3, 页码 1047-1054

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2009.08.017

关键词

Scaffold fabrication; Stereolithography; PEG; Localized bioactivity

资金

  1. National Science Foundation [CBET-0730750]
  2. W M. Keck Foundation [11804]
  3. University of Texas System
  4. Chihuahua Government
  5. NCRR [5G12 RR008124]

向作者/读者索取更多资源

Challenges remain in tissue engineering to control the spatial, mechanical, temporal and biochemical architectures of scaffolds Unique capabilities of stereolithography (SL) for fabricating multi-material spatially controlled bioactive scaffolds were explored in this work. To accomplish multi-material builds, a mimi-vat setup was designed allowing for self-aligning X-Y registration during fabrication The mini-vat setup allowed the part to be easily removed and rinsed. and different photocrosslinkable solutions to be easily removed and added to the vat Two photocrosslinkable hydrogel biopolymers. poly(ethylene glycol) dimethacrylate (PEG-dma. MW 1000) and poly(ethylene glycol) diacrylate (PEG-da, MW 3400), were used as the primary scaffold materials Multi-inaterial scaffolds were fabricated by including controlled concentrations of fluorescently labeled dextran, fluorescently labeled bioactive PEG or bioactive PEG in different regions of the scaffold. The presence of the fluorescent component in specific regions of the scaffold was analyzed with fluorescent microscopy, while human dermal fibroblast cells were seeded oil top of the fabricated scaffolds with selective bioactivity and phase contrast microscopy images were used to show specific localization of cells in the regions patterned with bioactive PEG. Multi-inaterial spatial control was successfully demonstrated in features down to 500 pin. In addition, the equilibrium swelling behavior of the two biopolymers after SL fabrication was determined and used to design constructs with the specified dimensions at the swollen state The use of multi-material SL and the relative ease of conjugating different bioactive ligands or growth factors to PEG allows for the fabrication of tailored three-dimensional constructs with specified spatially controlled bioactivity. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据