4.8 Article

Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering

期刊

ACTA BIOMATERIALIA
卷 6, 期 6, 页码 2237-2245

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2009.12.022

关键词

Scaffolds; Calcium silicate; Bone regeneration; Mechanical strength

资金

  1. Australia National Health and Medical Research Council
  2. Australian Research Council
  3. University of Sydney

向作者/读者索取更多资源

Diopside (CaMgSi2O6) powders and dense ceramics have been shown to be bioactive biomaterials for bone repair. The aim of this study is to prepare bioactive diopside scaffolds and examine their physicochemical and biological properties. X-ray diffraction, scanning electron microscopy (SEM), micro-computerized tomography and energy-dispersive spectrometry were used to analyse the composition, microstructure, pore size and interconnectivity of the diopside scaffolds. The mechanical strength and stability as well as the degradation of the scaffolds were investigated by testing the compressive strength, modulus and silicon ions released, respectively. Results showed that highly porous diopside scaffolds with varying porosity and high interconnectivity of 97% were successfully prepared with improved compressive strength and mechanical stability, compared to the bioglass and CaSiO3 scaffolds. The bioactivity of the diopside scaffolds was assessed using apatite-forming ability in simulated body fluids (SBF) and by their support for human osteoblastic-like cell (HOB) attachment, proliferation and differentiation using SEM, and MTS and alkaline phosphatase activity assays, respectively. Results showed that diopside scaffolds possessed apatite-forming ability in SBF and supported HOB attachment proliferation and differentiation. Bioactive diopside scaffolds were prepared with excellent pore/structure art, and improved mechanical strength and mechanical stability, suggesting their possible applications for bone tissue engineering regeneration. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据