4.8 Article

Quercetin-crosslinked porcine heart valve matrix: Mechanical properties, stability, anticalcification and cytocompatibility

期刊

ACTA BIOMATERIALIA
卷 6, 期 2, 页码 389-395

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2009.07.035

关键词

Crosslinking; Heart valve; ECM; Mechanical property; Cytocompatibility

资金

  1. National Natural Science Foundation [30470481, 30670569]
  2. National Basic Science Research Program of China [2005CB522704]

向作者/读者索取更多资源

Bioprosthetic heart valves, prepared by glutaraldehyde (GA) crosslinking, have some limitations due to poor durability, calcification and immunogenic reactions. The aim of this study was to evaluate the crosslinking effect of a natural product, quercetin, on decellularized porcine heart valve extracellular matrix (ECM). After crosslinking, the mechanical properties, stability, anticalcification and cytocompatibility were examined. The results showed that the tensile strength of quercetin-crosslinked ECM was higher than that of GA-crosslinked ECM. After crosslinking with quercetin, the thermal denaturation temperature of ECM was clearly increased. Quercetin-crosslinked ECM could be stored in D-Hanks solution for at least 30 days without any loss of ultimate tensile strength and elasticity. After soaking in D-Hanks solution for 36 days, there was only 11.55% non-crosslinked excess quercetin released and no further release thereafter. Cell culture study shows that no inhibition on proliferation of vascular endothelial cells occurred when the quercetin concentration was lower than 1 mu g ml(-1). This non-cytotoxic concentration was 100 times higher than that of GA. The resistibility of quercetin-crosslinked ECM to in vitro enzymatic hydrolysis was comparable to that of GA-crosslinked ECM. An in vitro anticalcification experiment showed that quercetin crosslinking could protect ECM from deposition of minerals in simulated body fluid. The present study demonstrated that quercetin can crosslink porcine heart valve ECM effectively, which suggests that quercetin might be a new crosslinking reagent for the preparation of bioprosthetic heart valve xenografts and scaffolds for heart valve tissue engineering. (C) 2009 Acta Materialia, Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据