4.8 Article

Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation

期刊

ACTA BIOMATERIALIA
卷 6, 期 12, 页码 4622-4633

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2010.07.029

关键词

Pluripotent stem cells; Proteomics; Heparan sulfate proteoglycan; Extracellular matrix

资金

  1. NSF [074556]
  2. VCU Graduate School

向作者/读者索取更多资源

Recent studies from our laboratory have shown that acellular substrates generated from human fibroblasts successfully maintained human pluripotent stem cells (hPSCs) in their undifferentiated state for extended periods. Aiming at better characterization, we conducted proteomic analyses to identify the extracellular matrix (ECM) proteins in mouse embryonic- and two human fibroblast-derived acellular substrates. Our studies identified heparan sulfate proteoglycan (HSPG) as a core component of these substrates and immunocytochemical analyses confirmed the presence of HSPG as well as other ECM proteins identified through proteomic analyses. In our attempt to develop surfaces that mimic fibroblast-deposited ECM and their self-renewal capabilities, substrates comprising HSPG and other core ECM proteins were formulated and assessed for the function of hPSC self-renewal. WA09 and BG01v hPSCs maintained on these substrates exhibit multiple characteristics of pluripotency, including (i) tight colony formation with typical stem cell morphology; (ii) positive expression of alkaline phosphatase, (iii) positive expression of SSEA3, SSEA4 and Oct4 based on immunocytochemical analyses; (iv) POU5F1, NANOG and SOX2 mRNA expression; and (v) in vitro differentiation and expression of germ-layer-specific markers. Our studies also reveal that although HSPG by itself-does not support hPSC self-renewal, a substrate that combines HSPG and fibronectin is sufficient for undifferentiated propagation of hPSCs. These studies form the basis for identification of appropriate ECM components in a substrate that synergistically promotes activation of adhesion and signaling pathways responsible for hPSC self-renewal. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据